POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name Satellite Communications [S2Teleinf2-SWxR>KS]

Course			
Field of study Teleinformatics		Year/Semester 2/3	
Area of study (specialization) xR virtual systems		Profile of study general academi	ic
Level of study second-cycle		Course offered in Polish	n
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 14	Laboratory class 24	es	Other 0
Tutorials 0	Projects/seminar 0	S	
Number of credit points 4,00			
Coordinators dr hab. inż. Rafał Krenz rafal.krenz@put.poznan.pl		Lecturers	

Prerequisites

Basic knowledge of physics, analog and digital communication systems as awell as EM wave propagation.

Course objective

The course presents the theoretical background as well as design and practical implementation of satellite communication systems.

Course-related learning outcomes

Knowledge: Knows the principles of the design and operation of satellite communication systems [K2_W02, K2_W03, K2_W05]. Understands the limitations of satellite systems due to the propagation effects and orbit type [K2_W02, K2_W03, K2_W05, K2_W11]. Knows the digital signall processing methods applied to satellite communications [K2_W03, K2_W03, K2_W05,K2_W10,K2_W11].

Skills:

Can design a satellite link, based on a link power budget and required link capacity [K2_U06, K2_U07]. Is able to select a satellite system for a specific application [K2_U01,K2_U08, K2_U14]. Can analyse the correlation between propagation conditions and link quality [K2_U01,K2_U07, K2_U16].

Social competences:

Is aware of the evolution of satellite communication systems, new services and their availability to the user [K2_K01, K2_K06, K2_U17] .

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: written/oral verification consisting of 4-5 questions, based on the list of 20-25 topics shared during the course duration. 50% of the total number of points necessary to pass. Labs: written reports, 50% of the total number of points required to pass. Grading scale: <50% - 2.0 (ndst); 50% to 59% - 3.0 (dst); 60% to 69% - 3.5 (dst+) ; 70% to 79% - 4.0 (db); 80% to 89% - 4.5 (db+); 90% to 100% - 5.0 (bdb).

Programme content

- 1. Introduction. Kepler laws. Orbit types.
- 2. Satellite bus and payload. Satellite subsystems.
- 3. Satellite links. Power budget analysis. Noise temperature.
- 4. Link quality. Estimation of the link quality in the uplink and the downlink.
- 5. Interference and signal distortion. Propagation effects. Radio noise.
- 6. Transponders. End-to-end link quality.
- 7. Mobile satellite systems. INMARSAT. Globalstar. Iridium. Orbcomm. StarLink.

Course topics

- 1. Introduction. Kepler laws. Orbit types.
- 2. Satellite bus and payload. Satellite subsystems.
- 3. Satellite links. Power budget analysis. Noise temperature.
- 4. Link quality. Estimation of the link quality in the uplink and the downlink.
- 5. Interference and signal distortion. Propagation effects. Radio noise.
- 6. Transponders. End-to-end link quality.
- 7. Mobile satellite systems. INMARSAT. Globalstar. Iridium. Orbcomm. StarLink.

Teaching methods

Lecture: multimedia presentation, materials available online; stationary/hybrid/online forms of presentation acceptable

Laboratory classes: case study, problem solving.

Bibliography

Basic:

L. J. Ippolito, Satellite Communications Systems Engineering, Wiley 2017

D. J. Bem, Radiodyfuzja satelitarna, WKiŁ 1990

Additional:

Bruce R. Elbert, Introduction to Satellite Communication, Artech House 2008 Anil K. Maini, Varsha Agrawal, SATELLITE TECHNOLOGY PRINCIPLES AND APPLICATIONS, John Wiley & Sons Ltd. 201

Breakdown of average student's workload

	Hours	ECTS
Total workload	103	4,00
Classes requiring direct contact with the teacher	38	1,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	65	2,50